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ABSTRACT: A soft computing approach to model the
structure–property relations of nonwoven fabrics for filtra-
tion use is developed. Because the number of samples is
very limited, the artificial neural network model to be
established must be a small-scale one. Consequently, this
soft computing approach includes two stages. In the first
stage, the structural parameters are selected by using a
ranking method, to find the most relevant parameters
as the input variables to fit the small-scale artificial neural
network model. The first part of this method takes the
human knowledge on the nonwoven products into
account. The second part uses a data sensitivity criterion
based on a distance method that analyzes the measured
data of nonwoven properties. In the second stage, the arti-

ficial neural network model of the structure–property rela-
tions of nonwoven fabrics is established. The results show
that the artificial neural network model yields accurate
prediction and a reasonably good artificial neural network
model can be achieved with relatively few data points by
integrated with the input variable selecting method devel-
oped in this research. The results also show that there is
great potential for this research in the field of computer-
assisted design in nonwoven technology. � 2006 Wiley
Periodicals, Inc. J Appl Polym Sci 103: 442–450, 2007
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INTRODUCTION

Nonwoven fabrics are polymer materials that have
sheet or web structures created by bonding or entan-
gling fibers or filaments and perforating films with
mechanical, thermal, or chemical methods. Because of
the superior and particular properties of nonwoven
products, their uses are continuing to expand. The
major end-uses of nonwoven fabrics include dispos-
able personal hygiene products, medical products,
wipes and towels, filtration media, coated fabrics, geo-
textiles, roofing products, and interlinings.

The filter performances and other properties of non-
woven fabrics for filtration use are highly related with
their structural characteristics. Therefore, investigat-
ing the structure–property relations will be not only
beneficial to better understanding of nonwoven prod-
ucts but also possible of achieving computer-assisted
design of nonwoven fabrics. The structure–property
relation of nonwoven fabrics, however, is a compli-

cated nonlinear problem that is difficult to be modeled
physically. Therefore, some researchers studied the
structure–property relations of nonwoven fabrics
using an experimental approach.

Ericson and Baxter1discussed the dependence of
fabric properties of spun-bonded nonwovens on
structural parameters, such as weight uniformity, fila-
ment separation, and filament directionality. Troesch
and Hoffmann2 found that the binder-to-fiber ratio
and the distribution of the binder in the web have a
decisive effect on the mechanical properties of nonwo-
ven fabrics. Wyatt et al.3 and Wei et al.4 carried out ex-
perimental investigations of the effect of fiber struc-
ture and morphology on the mechanical properties of
thermal bonded nonwoven fabrics. Their experiments
confirmed that tensile strength and stiffness of the fab-
rics correlate with the orientation and crystallinity of
fibers. Nosov and Dzhavakhishvili5 studied the ther-
mal resistance of needle punched nonwoven fabrics of
various fiber composition, surface density, and thick-
ness. Experiments showed that the thickness of the
nonwovens exerted the greatest effect on its thermal
resistance; surface density and fiber composition
exerted a smaller effect. Subramaniam et al.6 pro-
duced different needle-punched nonwoven fabrics of
different weights, thicknesses, and blend composi-
tions and found that the air permeability of nonwo-
vens was strongly dependent on the fiber volume
fraction. Pan and Wang7 studied the relationship
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between the structure and filtration property of melt
blown nonwoven fabrics experimentally. The thick-
ness of the nonwoven fabrics was the only structural
parameter considered. The relationships between the
thickness and the filtration resistance and filtration
efficiency were established using the curve-fitting
method. Genis8 established a relation between the
fiber diameter, fabric thickness and the air permeabil-
ity and a relation between the fiber diameter, fabric
thickness, volume density and the sound absorption
coefficient of melt blown nonwoven fabrics by multi-
ple regression analysis of the experimental data. Lin
et al.9 investigated the effect of fiber arrangement on
the mechanical properties of thermal bonded nonwo-
ven fabrics and showed that the anisotropy of the
mechanical properties of nonwoven fabrics could be
improved by arranging the fibers at random. Rong
and Bhat10 used differential scanning calorimetry to
analyze the binder fiber distribution of thermal
bonded nonwoven fabrics and investigated the rela-
tionship of binder fiber distribution and the tensile
strength of nonwovens.

All these investigations used an experimental ap-
proach to study the structure–property relations of
nonwoven fabrics. And some used regression analysis
to correlate the structural parameters and properties.
These correlations were strongly dependent on the ex-
perimental data and thus had poor generalization.
The other drawback of these investigations is that few
structural parameters of nonwovens were considered.
Most focused on the fiber parameters, such as fiber di-
ameter and fiber composition. Only a few fabric struc-
tural parameters were investigated.

Consequently, it is necessary to make a mathemat-
ical approximation of inherent simplicity, i.e., to use
the empirical models. The artificial neural network
(ANN) is an empirical model that can provide good

approximations in the presence of noisy data and
smaller number of experimental points.11 Also, the
assumptions under which ANNs work are less strict
than other meta-models. Therefore, various ANN
models have been used to predict the properties of
yarns and of woven, knitted, and nonwoven fabrics
since the mid-1990s.12–18 Chen et al.19,20 established
ANN models to predict the fiber diameter of melt-
blown nonwoven fabrics from the processing param-
eters and compared the ANN model with physical
and statistical models. However, it is still very
scanty for the use of ANN on modeling the struc-
ture–property relations of nonwoven fabrics.

As a primary effort, the present work is aimed at
developing a soft computing approach to model the
structure–property relations of nonwoven fabrics. To
link this work closely with industrial applications,
the samples used are all collected from a nonwoven
manufacturer in France. However, only a total of 18
samples are available; thus, the ANN model to be
established based on these limited samples must be
a small-scale one. Because many structural parame-
ters affect the properties, the structural parameters
have to be ranked before modeling, so as to find the
most relevant parameters to fit the small-scale ANN
model. These selected parameters will be the input
variables of the small-scale ANN model. Conse-
quently, this soft computing approach includes two
stages. The first stage is selecting the structural pa-
rameters as the input variable of ANN model, which
is achieved with a two-part ranking method. The
second stage is the ANN modeling of the structure–
property relations of nonwoven fabrics. Compared
with previous studies, this research will establish a
reasonably good ANN model that can generalize
well and consider more structural parameters as the
model inputs.

Figure 1 Relationship between input and output spaces.
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SELECTION OF RELEVANT
STRUCTURAL PARAMETERS

In this study, we develop a method to rank the struc-
tural parameters which is different from above-men-
tioned input variable selecting methods. This two-
part method can deal with nonlinear relationships
between input and output variables, without the need
for a large number of data to run it. The first part takes
the human knowledge on nonwoven products into
account (VAk). The second part is a data sensitivity
criterion based on a distance method (Sk).

The ranking criterion is formulated as follows. Let
Xs ¼ (xs1, xs2, . . . , xsk, . . . , xsn)

T denote the input vector of
all the structural parameters and Ys ¼ (ys1, ys2, . . . ,
ysj, . . . , ysm,)

T the output vector of properties. The sub-
script s indicates the sth sample (s [ {1, . . . , i, . . . , l, . . . ,
z}). All the recorded data have been normalized
to eliminate the scale effects and the series of data
contains z samples. To rank the relevant inputs for
a given output yj, a criterion variable Fk is defined as
follows:

Fk ¼ g1 � VAkðxk; yjÞ þ g2 � Skðk
2 f1; . . . ng; j 2 f1; . . .mgÞ; ð1Þ

where g1 and g2 are two positive coefficients. The cri-

terion is designed for searching the best compromise

between the human knowledge and data sensitivity.
The first part (VAk) of the ranking criterion is

determined with the aid of the human knowledge.21

As shown in Figure 1, the universe of discourse of yj
is divided into t equivalent intervals Cjp (p [ {1, . . . ,

t�1}). The set Akp is constructed with the set of input

data xk, which corresponds to the output interval Cjp

of yj.
The human knowledge shown in Table I is

expressed with linguistic sentences, such as

Rule 1: IF x1 is increasing AND y1 is increasing
THEN R (x1, y1) ¼ þ1
Rule 2: IF x1 is increasing AND y1 is decreasing
THEN R (x1, y1) ¼ �1
Rule 3: IF x1 is decreasing AND y1 is increasing
THEN R (x1, y1) ¼ �1
Rule 4: IF x1 is decreasing AND y1 is decreasing
THEN R (x1, y1) ¼ þ1

Then VAk can be calculated using the following
formula:

VAkðxk; yjÞ ¼ 1

t� 1

Xt�1

p¼1

vap

xinfkp ¼ min
s2f1;...;zg

xskjysj 2 Cjp

� �
and x

sup
kp ¼ max

s2f1;...;zg
xskf jysj 2 Cjpg

if Ikp ¼ f;
vap ¼ 1

2 jRðxk; yjÞj �
�
1þ Rðxk; yjÞ

�
; if xinfkpþ1 � x

sup
kp

vap ¼ 1
2 jRðxk; yjÞj �

�
1� Rðxk; yjÞ

�
; if x

sup
kpþ1 � xinfkp

(

if Ikp 6¼ f;
vap ¼ 1

2 jRðxk; yjÞj �
�
1þ Rðxk; yjÞ

�� 1� jIkpj
jUkpj

� �
; if x

sup
kpþ1 � xinfkp

vap ¼ 1
2 jRðxk; yjÞj �

�
1� Rðxk; yjÞ

�� 1� jIkpj
jUkpj

� �
; if xinfkpþ1 � xinfkp

8><
>:

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

(2)

where R (x1, y1) is the relation index between the
structural parameter x1 and property y1; vap is the
human knowledge criterion value in the interval Cjp;

xinfkp , and x
sup
kp are the lower bound (inferior limit) and

upper bound (superior limit) of set Akp, respectively;
Ikp and Ukp are the intersection set and union set

TABLE I
Human Knowledge of Nonwoven Products

Properties structural
parameters

Air
permeability

Strength at break
(MD)

Elongation at break
(MD)

Fiber
Length þ1 þ1 þ1
Count �1 þ1 þ1

Nonwoven
Thickness �1 þ1 þ1
Total pore volume þ1 �1 �1
Basis weight �1 þ1 þ1
Basis weight uniformity þ1 þ1 þ1
Fiber volume density �1 þ1 þ1
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generated by Akp and Akpþ1, respectively; and j is an
empty set.

The data sensitivity criterion Sk in eq. (1) implies
the following two hypotheses:22

1. IF a small variation of an input variable corre-
sponds to a big variation of the output variable,
THEN this input is considered as a sensitive
variable.

2. IF a big variation of an input variable corresponds
to a small variation of the output variable, THEN
this input is considered as an insensitive variable.

Therefore, according to criterion Sk, an input vari-
able is considered to be relevant if its small variation
induces a great variation of an output:

Tk ¼
Xz
i 6¼l

1

dðyij; yljÞ
d0kðXi;XlÞ (3)

Sk ¼
max

k2f1;...;ng
ðTkÞ � Tk

max
k2f1;...;ng

ðTkÞ � min
k2f1;...;ng

ðTkÞ ; (4)

where d0kðXi‚XlÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2ðXi‚XlÞ � d2kðXi‚XlÞ

q
, d (Xi, Xl) is

the Euclidean distance between Xi and Xl in the input
space. dk (Xi, Xl) is the projection of d (Xi, Xl) on the axis
xk; and d (yij, ylj) is the Euclidean distance between yi
and yl of the jth output variable. The smaller the Tk

value, the more relevant to yj will be the input xk. So Sk
is calculated by eq. (4) to be standardized and have the
same tendency as the human knowledge VAk (larger
VAkmeansmore relevant).

Two methods are employed to determine the
weights g1 and g2 in eq. (1). As shown in eqs. (5) and
(6), method 1 uses the variation coefficient of VAk and
Sk as their weights g�11 and g�21, respectively. The second
subscript ‘‘1’’ of g�11 and g�21 indicates method 1. The
principle of this method is as follows. A larger varia-
tion coefficient means that the corresponding criterion
has stronger capability to differentiate between sam-
ples. So this criterion should be assigned a larger
weight.23 As shown in eqs. (7) and (8), method 2 uses
the dispersion maximization decision principle to de-
termine the weights g�12 and g�22 which means larger di-
spersion of a criterion corresponds to larger weight.24

The second subscript ‘‘2’’ of g�12 and g�22 indicates me-
thod 2. The above weights are then normalized using
eq. (9). The final weights are the arithmetic average of
weights determined by the two methods, as shown in
eqs. (10) and (11):

g�11 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n�1

Pn
k¼1 VAk � 1

n

Pn
k¼1 VAk

� 	2q
1
n

Pn
k¼1 VAk

(5)

g�21 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n�1

Pn
k¼1 Sk � 1

n

Pn
k¼1 Sk

� 	2q
1
n

Pn
k¼1 Sk

(6)

g�12 ¼

Pn
i 6¼k
1

jVAi � VAkjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i6¼k
1

jVAi � VAkj
 !2

þ Pn
i 6¼k
1

jSi � Skj
 !2

vuut (7)

g�22 ¼

Pn
i 6¼k
1

jSi � SkjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i6¼k
1

jVAi � VAkj
 !2

þ Pn
i 6¼k
1

jSi � Skj
 !2

vuut (8)

g11 ¼ g�11
g�11 þ g�21

g21 ¼ g�21
g�11 þ g�21

g12

¼ g�12
g�12 þ g�22

g22 ¼ g�22
g�12 þ g�22

ð9Þ

g1 ¼ 1

2
ðg11 þ g12Þ (10)

g2 ¼ 1

2
ðg21 þ g22Þ (11)

After calculating VAk, Sk, and the weights g1, g2,
the criterion variable Fk of each input xk for a given
output yj can be determined. The larger the Fk value,
the more relevant to yj will be the input xk. Then all
the Fk are ranked in a descending order. Accord-
ingly, the relevancies of all input variables are in the
same order as the value of Fk ranked. That is, the
input corresponding to the first Fk of this rank will
be the most relevant input to output yj, and the like.

ARTIFICIAL NEURAL NETWORK MODELING

An artificial neural network is an information-pro-
cessing system where processing occurs at many
simple elements called neurons organized in layers
and where signals are passed between neurons over
connection links. Each connection link has an associ-
ated weight that multiplies the signal transmitted
and each neuron applies a transfer function to its net
input (sum of weighted input signals) to determine
its output signal.11

Seven structural parameters and three properties
of nonwoven fabrics will be used as the inputs and
outputs of the ANN model. Each property is mod-
eled, respectively.

For lack of plentiful samples, small-scaled ANN
models are established in this study. As far as our
model is concerned, five inputs and one output are
preferred. A feedforward artificial neural network is
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created using the Matlab Neural Network Toolbox.
There are one hidden layer with two neurons (more
hidden neurons will cause too many unknown
weights, while the number of samples is quite lim-
ited) and one output layer with one neuron in the
ANN. The transfer functions of the hidden layer and
output layer neurons are the hyperbolic tangent
function and pure linear function, respectively.

The ANN is trained with the help of the error
back-propagation algorithm. To avoid overfitting,
the Bayesian framework is employed in the training
procedure. In this framework the weights and biases
of the network are assumed to be random variables
with specified distributions. The regularization pa-
rameters are related to the unknown variances asso-
ciated with these distributions. We can then estimate
these parameters using statistical techniques.24 The
training function used is ‘‘trainbr,’’ which updates
the weight and bias values according to Levenberg–
Marquardt optimization. It minimizes a linear com-
bination of squared errors and weights, then deter-
mines the correct combination so as to produce a
network that generalizes well. The process is called
Bayesian regularization. To test the ANN model, all
the experimental data are split into a training set
(with 17 data points) and a testing set (with 1 data
point). All combinations of 17 and 1 data points are
used to train and test the ANN. Altogether there are
18 cases being trained and tested. Finally, the aver-
age of all the 18 ANN results is compared with the
experimental data.

EXPERIMENTAL

To make this work closely linked with industrial
applications, the samples used are all collected from
a nonwoven manufacturer in France. The method of
nonwoven manufacturing is dry laid for web form-
ing and thermal bonding for web bonding. The fiber
used is polyester with a round cross section. There
are seven structural parameters: fiber length, fiber
count, total pore volume (tp), basis weight uniform-
ity, thickness (tk), basis weight (bw), and fiber vol-
ume density (fvd) of nonwoven fabrics. The total
pore volume of nonwoven fabrics is defined as the
percentage of all the pores in a nonwoven sample
and is calculated with the following formula:

tp ¼ ½1� bw=ðtk� fiber density� 1000Þ� � 100% (12)

The basis weight uniformity is the patchiness or
mass nonuniformity of nonwoven samples. A mono-
chromatic LED light source (Philips Lumileds Light-
ing, San Jose, CA) and a digital camera (Uniq Vision,
Santa Clara, CA) are used to get the images of non-
wovens. The basis weight uniformity is determined
with the help of image analysis method.26 The fiber

volume density of nonwoven fabrics is defined as
the total length (km) of fibers in a unit volume (m3)
of nonwoven fabrics:

fvd ¼ bw=ðtk� fiber count� 0:0001Þ (13)

The properties of nonwoven fabrics investigated are
the air permeability, strength at break along the mach-
ine direction (MD), and elongation at the break along
the machine direction (MD). The air permeability is
measured on an air permeability tester (Textest AG,
Schwerzenbach, Switzerland). The strength at break
and elongation at break are measured on a universal
tensile tester (Instron Deutschland GmbH, Darmstadt,
Germany). All the structural parameters (inputs) and
properties (outputs) are shown in Table II.

The computer system used is a personal computer
with a central processing unit of Pentium IV (3.0 GHz),
an internal memory of 512 MB and a hard disk of
160 GB.

The operating system is Windows XP. The techni-
cal computing software of Matlab is employed in the
modeling process.

RESULTS AND DISCUSSION

As mentioned above, there are altogether 18 samples
in this investigation. First, the structural parameters
of nonwovens are selected with regard to each prop-
erty using the method put forward earlier in the sec-
tion, Selection of Relevant Structural Parameters.
Tables III–V give the ranking results of structural pa-
rameters for the three properties of nonwovens.

As far as the air permeability is concerned, Table III
shows that the weights g1 ¼ 0.5585 for VAk and g2
¼ 0.4415 for Sk, which shows that the two criterions
have almost equal importance while the human
knowledge criterion is a little more important. It can
be seen from Table III that the most relevant structural
parameter is the fiber volume density of nonwovens,
followed by the thickness and basis weight uniformity
of nonwovens. Note that the criterion Sk is insufficient
to explain the ranking. For example, considering Sk
(only the measured data), the thickness of nonwovens
is the most irrelevant parameter. By adding a more
general knowledge about the products (human
knowledge), the thickness increases to the second
place, which coincides with our general knowledge
on the close relationship between the air permeability
and the thickness of nonwovens.

The ranking order for the strength at break (MD)
is shown in Table IV. For this property, the weights
g1 ¼ 0.4542 for VAk and g2 ¼ 0.5458 for Sk. It can be
found from Table IV that the most relevant struc-
tural parameter is the fiber volume density, followed
by the fiber count and basis weight uniformity of
nonwovens.
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The ranking order for the elongation at break
(MD) is shown in Table V. In this case, the weights
g1 ¼ 0.5644 for VAk and g2 ¼ 0.4356 for Sk. It can be
seen from Table V that the most relevant structural
parameter is the fiber count, followed by the basis
weight uniformity and fiber volume density of non-
wovens.

For designing the ANN model of structure–air
permeability relation, the five inputs selected are the
fiber volume density, thickness, basis weight uni-
formity, basis weight, and total pore volume of non-
wovens according to the result of Table III. Table VI
gives the experimental values, predicted values and
errors for the air permeability. The predicted values
are the average of 18 results. The average error
�0.78% proves the effectiveness of the ANN model.

The five inputs selected for the strength at break
(MD) are the fiber volume density, fiber count, basis
weight uniformity, total pore volume, and fiber
length according to the result of Table IV. Table VII
gives the experimental values, predicted values and
errors for the air permeability. The predicted values
are the average of 18 results. The average error
�0.88% confirms the validation of the ANN model.

For the elongation at break (MD) prediction, with
referring to Table V the five inputs selected are the
fiber count, basis weight uniformity, fiber volume
density, total pore volume and thickness of nonwo-
vens. Table VIII gives the experimental values, pre-
dicted values and errors for the elongation at break
(MD). The predicted values are the average of 18
results. The average error is �0.84%, which indicates
that the ANN model has a fine performance.

It can be seen from Tables VI–VIII that some of
the errors between the experimental value and pre-

dicted value are a little larger (the absolute value is
nearly 10%) although the average error is small (the
absolute value is less than 1%). The possible reasons
may be as follows.

First, the number of samples for training is quite
small. It is well known that more training samples
will bring smaller prediction errors. However, just as
mentioned above, to make this work closely linked
with industrial applications, the samples used are all
collected from a nonwoven manufacturer. It is im-
possible to obtain many samples made from differ-
ent raw materials and different technologies from a

TABLE VI
Results of ANN Model: Air Permeability

Sample no.
Experimental value

(l/m2/s)
Predicted value

(l/m2/s)
Error
(%)

1 1193.89 1079.78 �9.56
2 765.28 822.62 7.49
3 668.06 608.15 �8.97
4 488.61 442.18 �9.50
5 389.71 368.42 �5.46
6 364.72 336.18 �7.83
7 1698.00 1578.36 �7.05
8 1361.00 1493.41 9.73
9 930.00 969.49 4.25
10 715.00 679.42 �4.98
11 267.00 286.56 7.33
12 258.00 242.89 �5.86
13 756.00 825.37 9.18
14 722.00 767.87 6.35
15 360.00 324.87 �9.76
16 214.00 205.51 �3.97
17 187.50 204.74 9.19
18 131.00 137.96 5.31
Average error �0.78

TABLE VII
Results of ANN Model: Strength at Break (MD)

Sample no.
Experimental value

(N)
Predicted value

(N)
Error
(%)

1 39.30 35.85 �8.78
2 51.30 55.37 7.93
3 67.60 72.04 6.57
4 69.90 66.45 �4.94
5 97.20 104.64 7.65
6 133.00 124.02 �6.75
7 27.50 24.79 �9.85
8 41.70 37.98 �8.92
9 68.70 72.19 5.08
10 91.00 98.82 8.59
11 186.00 174.71 �6.07
12 220.00 203.26 �7.61
13 27.60 30.06 8.91
14 53.90 49.77 �7.66
15 99.10 93.16 �5.99
16 154.00 168.05 9.12
17 172.00 183.26 6.55
18 154.00 139.24 �9.58
Average error �0.88

TABLE VIII
Results of ANN Model: Elongation at Break (MD)

Sample no.
Experimental value

(%)
Predicted value

(%)
Error
(%)

1 8.70 9.19 5.63
2 8.60 8.13 �5.47
3 8.80 9.22 4.77
4 10.10 9.26 �8.32
5 9.80 8.97 �8.47
6 9.40 8.53 �9.26
7 21.30 23.15 8.69
8 24.20 22.16 �8.43
9 15.10 15.99 5.89
10 18.40 16.79 �8.75
11 15.60 16.82 7.82
12 18.20 17.53 �3.68
13 21.80 20.36 �6.61
14 33.20 35.28 6.27
15 34.90 32.18 �7.79
16 33.00 35.92 8.85
17 33.80 31.85 �5.77
18 24.20 26.48 9.42
Average error �0.84
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textile mill that is in stable production. In fact, it is
exactly the aim of this research to establish a soft
computing based prediction model with few samples
but tolerable predicting error for textile applications.

Second, the structural parameters are selected and
several parameters that are not very relevant to the
properties investigated are excluded from the ANN
model. This will cause information loss including
loss of useful information, which will produce larger
prediction errors. A small number of samples re-
quire small-scaled ANN models that have few input
neurons. To decrease the prediction errors, solutions
are applied to the established ANN model. For
example, the Bayesian framework is employed in the
training procedure to avoid overfitting. By compari-
son, it is found that the prediction errors can be
much more reduced than the conventional back-
propagation algorithm.

CONCLUSIONS

A soft computing approach to model the structure–
property relations of nonwoven fabrics for filtration
use is developed. The structural parameters are
selected by using a two-part ranking method de-
signed to deal with nonlinear relationships between
input and output variables, and no large number of
data is required to run it. The models of structure–
property relations of nonowovens are established by
using the artificial neural network technique. The
results show that the ANN model yields accurate
prediction, and a reasonably good ANN model can
be achieved with relatively few data points by inte-
grated with the input variable selecting method
developed in this research. The results also show
that there is great potential for this research in the

field of computer-assisted design in nonwoven tech-
nology.
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